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Abstract
An extended phase space x–p–X–P is introduced for one-mode systems, where
x–p is the position–momentum plane and X–P is the quantum correlations
plane. The Wigner functions W(x, p) and the Weyl functions W̃ (X,P )

for arbitrary operators are studied in this space. Creation and annihilation
operators for Wigner and Weyl functions are introduced and are used to perform
displacements and squeezing in the x–p–X–P extended phase space. The
formalism can be used for the construction of quantum states with desirable
correlation properties.

PACS numbers: 03.65.−w, 03.65.Ca

1. Introduction

The Wigner function W(x, p) [1–3] describes a particle in phase space in a way consistent
with the quantum mechanics. The Weyl function W̃ (X,P ), where X and P are position and
momentum increments, describes its correlation properties. In view of the central role that
the quantum correlations play in quantum communications and quantum computing, it is
important to develop this formalism further.

Recent work [4] has introduced the concept of extended phase space x–p–X–P (position–
momentum–position increment–momentum increment) in order to provide a description that
makes explicit not only the position and momentum of the particle but also its correlation
properties. Quantum correlations are an important aspect of quantum mechanics and although
they are best exemplified in Schrödinger cat states, they are present in every quantum state.
The extended phase space formalism aims to describe quantum correlations in the ‘correlation
plane’ X–P and investigate their relationship with the position and momentum in the x–p plane.
Reference [4] has introduced novel quantities which describe the uncertainties in position and
momentum (δx, δp) and also the quantum correlations in position and momentum (δX, δP ). It
proved novel uncertainty relations which elucidate the deep connection between uncertainties
in position and momentum, and quantum correlations in position and momentum. Similar
uncertainty relations have also been discussed in [5].
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In this paper we extend further this work. In section 2 we introduce Wigner and Weyl
functions for arbitrary operators which are not necessarily density matrices. Non-diagonal
parts of a density matrix can be viewed as general non-Hermitian operators and the study of
such operators in this paper enables us to manipulate individually the various components of a
quantum state. We also introduce an orthonormal basis in terms of the Laguerre polynomials.
Since the Wigner and Weyl functions are related through the Fourier transform we are able
to construct a formalism similar to the harmonic oscillator formalism for wavefunctions. In
section 3 we study various quantities that quantify the quantum correlations and discuss their
relative merits.

In section 4 we introduce creation and annihilation operators for the Wigner and Weyl
functions. The Wigner x–p and the Weyl X–P representations are similar to the position
and momentum representations in the harmonic oscillator formalism. In section 5 we use
them to introduce displacement operators in the x–p–X–P space, for the Wigner and Weyl
functions. These displacement operators depend on four variables and displace not only in the
position–momentum x–p space, but also in the quantum correlation plane X–P. In section 6
we study the Gaussian Wigner and Weyl functions and their displacements.

In section 7 we study squeezing of Wigner and Weyl functions. We stress that this is
much more general than squeezing in the x–p phase space. It is squeezing in the x–p–X–P
extended phase space and its general case involves ten generators. In this paper we only
study a special case that demonstrates its use for the design of quantum states with desirable
correlation properties.

In section 8 we use this formalism to study the time evolution of Wigner and Weyl
functions. We conclude with a discussion of our results in section 9.

2. Wigner and Weyl functions

We consider the displacement operator D(A),

D(A) = exp(Aa† − A∗a) (1)

where a† and a are the usual creation and annihilation operators. D(A) is a unitary operator,
which can also be expressed in terms of the position x̂ and momentum p̂ operators as

D

(
A = x + ip√

2

)
≡ D(x, p) = exp(ipx̂ − ixp̂). (2)

Coherent states are defined as |α1, α2〉 = D(α1, α2)|0〉. For later purposes we point out that
the matrix elements of D(A) in terms of Laguerre polynomials [1] are given by

〈M|D(A)|N〉 =
(
N!

M!

)1/2

AM−N exp

(−|A|2
2

)
LM−N
N (|A|2) (3)

whereLM−N
N are Laguerre polynomials and |N〉 are number eigenstates with N = 0, 1, 2, . . . .

We also consider the parity operator

U0 = exp(iπa†a) =
∑
N

(−1)N |N〉〈N | (4)

and the displaced parity operator

U(x, p) = D(x, p)U0D
†(x, p) = D(2x, 2p)U0 = U0D(−2x,−2p). (5)

For later purposes we mention the following properties [3]:

U †(x, p) = U(x, p) U 2(x, p) = 1 (6)

U(x1, p1)U(x2, p2) = D(2x1 − 2x2, 2p1 − 2p2) exp[2i(x1p2 − x2p1)] (7)

Tr[D(x, p)] = 2πδ(x)δ(p). (8)
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The Wigner function of an ‘arbitrary’ operator �

� =
∑
N,M

�NM |N〉〈M| (9)

is defined in terms of the displaced parity operator as

W(x, p) = 1

2π

∫
dX

〈
x +

1

2
X

∣∣∣∣�
∣∣∣∣x − 1

2
X

〉
exp(−ipX)

= 1

π
Tr[�U(x, p)] =

∑
N,M

�NMWMN(x, p) (10)

where

WMN(x, p) ≡ 1

π
〈M|U(x, p)|N〉

= (−1)N

π

(
N!

M!

)1/2

[21/2(x + ip)]M−N exp(−x2 − p2)LM−N
N (2x2 + 2p2). (11)

equations (3), (4) and (5) have been used in the proof of the above relation. Note that
WMN(x, p) are complex functions. Combining equation (11) together with the property of
equation (6) we easily prove that

W ∗
MN(x, p) = WNM(x, p). (12)

This can also be proved using the expression in equation (11) in conjuction with the property
of Laguerre polynomials

xM(M!)−1LM−N
N (−x) = xN(N!)−1LN−M

M (−x). (13)

If � is a Hermitian operator�MN = �∗
NM we can easily prove that the corresponding Wigner

function is real-valued. This is the case when � is a density matrix. For non-Hermitian
operators the Wigner function is complex. For example if � = |f 〉〈g| where |f 〉 and |g〉 are
pure states, the corresponding ‘cross-Wigner function’ is, in general, complex. The study of
such operators in this paper enables us to manipulate separately the cross-terms of a density
matrix.

It has been pointed out in a more general context by Moyal [2], that WMN(x, p) form an
orthonormal basis in the Hilbert space of complex functions of two variables. Indeed, we can
prove the following properties [6]:∑

M,N

WMN(x, p)W
∗
MN(x

′, p′) = 1

2π
δ(x − x ′)δ(p − p′) (14)

∫
dx dpWMN(x, p)W

∗
M ′N ′(x, p) = 1

2π
δMM ′δNN ′ . (15)

An easy way of proving equation (14) is to use equation (11) together with equations (7) and
(8). Equation (15) can be proved by using equation (11) in conjuction with the properties of
Laguerre polynomials [7]. From equations (15) and (10) we may express the density matrix
elements �NM in terms of the Wigner function as

�NM = 2π
∫

dx dpW(x, p)W ∗
MN(x, p). (16)

It is clear that to every (normalizable) complex function W(x, p) corresponds an operator.
Reference [8] studied necessary conditions that the Wigner function should obey so that the
corresponding operator is a density matrix.
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Another useful property that can be proved using equations (11) and (7) is∑
N

WMN(x, p)WNK(x
′, p′) = (−1)K

π
exp [i2(xp′ − x ′p)]WMK(x − x ′, p − p′). (17)

The Fourier transform of WMN(x, p) defined as

W̃MN(X,P ) =
∫

dx dpWMN(x, p) exp [−i(Px − Xp)] (18)

is the same function as WMN(x, p) up to a factor and with x = X/2 and p = P/2:

W̃MN(X,P ) = π(−1)NWMN

(
X

2
,
P

2

)

=
(
N!

M!

)1/2 (
X + iP

21/2

)M−N

exp

[
−1

4
(X2 + P 2)

]
LM−N
N

(
X2 + P 2

2

)
. (19)

Another function which is useful in phase space methods is the Weyl (or characteristic)
function, which is defined as

W̃(X,P ) =
∫

dx
〈
x + 1

2X |�| x − 1
2X

〉
exp (−iPx) = Tr [�D(X,P)]. (20)

We have used the notation W̃ (X,P ) because it is known that the Wigner function is related to
the Weyl function through the Fourier transform

W̃ (X,P ) =
∫

dx dp W(x, p) exp [−i(Px − Xp)] (21)

with (x, P) and (X, p) as dual variables. Using the above formulas we can also express the
Weyl function as

W̃ (X,P ) =
∑
N,M

�NMW̃MN(X,P ) (22)

where W̃MN(X,P ) is defined in equations (18) and (19), and can also be written as

W̃MN(X,P ) = 〈M|D(X,P)|N〉. (23)

We can express the elements �NM in terms of the Weyl function as

�NM = 1

2π

∫
dX dP W̃(X,P )W̃

∗
MN(X,P ). (24)

We can also prove that

1

2π

∫
|W̃(X,P )|2 dX dP = 2π

∫
|W(x, p)|2 dx dp = Tr[�†�]. (25)

We note that the Weyl functions of the operators � and �† are related as follows:

W̃
∗
(−X,−P ;�) = W̃ (X,P ;�†). (26)

3. Correlation widths and uncertainties

Let �x and �p be the ‘usual’ uncertainties:

〈xM〉 =
∫

xM〈x|�|x〉 dx =
∫

xMW(x, p) dx dp
(27)

�x = (〈x2〉 − 〈x〉2)1/2.
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Similar definitions hold for �p. It is well known that if the operators � are density matrices,

�x�p � 1
2 . (28)

We will see below examples of operators which are not density matrices and do not satisfy the
inequality (28).

We next introduce the uncertainties

〈〈xM〉〉 ≡ [Tr(�†�)]−12π
∫

xM |W(x, p)|2 dx dp
(29)

σ(x) = (〈〈x2〉〉 − 〈〈x〉〉2)1/2.

In a similar way we define for p. We note that the Wigner function in the first power appears
in equation (27) and the squared Wigner function appears in equation (29). We also introduce
the ‘correlation width’

〈〈XM 〉〉 ≡ [Tr(�†�)]−1 1

2π

∫
XM |W̃ (X,P )|2 dX dP

(30)
τ (X) = (〈〈X2〉〉 − 〈〈X〉〉2)1/2

and in a similar way we define the correlation width for P. Similar quantities have been
introduced in [4] but here the normalization is different. The τ (X) and τ (P ) quantify the
correlations. The concept of quantum correlations is intimately connected with quantum
mechanics. The formalism developed in this paper (X–P correlations plane, Weyl functions,
τ (X), τ (P )) tries to highlight and quantify the quantum correlations.

Using equation (26) we easily see that for Hermitian operators 〈〈X〉〉 = 〈〈P 〉〉 = 0,
but for more general operators considered here this is not necessarily true. For example, if
� = |α1, α2〉〈β1, β2| where |α1, α2〉 and |β1, β2〉 are coherent states, 〈〈X〉〉= α1 −β1, 〈〈P 〉〉 =
α2 − β2. Such an operator is a cross-term in the density matrix describing the Schrödinger cat
N (|α1, α2〉 + |β1, β2〉). Here 〈〈X〉〉, 〈〈P 〉〉 define the ‘average position’ of the corresponding
cross-Weyl function in the X–P plane.

It can be proved [4] that for pure states (� = |s〉〈s|)
σ(x) = 2−1/2�x σ(p) = 2−1/2�p τ(X) = 21/2�x τ(P ) = 21/2�p (31)

but in general the σ - and τ -quantities are different from the �-uncertainties. Reference [4]
proved the inequalities

τ (X) σ(p) � 1
2 σ(x)τ (P ) � 1

2 (32)

written here in a form consistent with the normalization that we use in this paper.
As an example we consider the thermal density matrices

ρth = [1 − exp (−β)]
∑
N

exp (−βN)|N〉〈N |

= 1

2πηT

∫
dγ1 dγ2 exp

(
−γ 2

1 + γ 2
2

2ηT

)
|γ1, γ2〉〈γ1, γ2| (33)

where ηT = (expβ − 1)−1 is the average number of thermal photons. It can easily be shown
that the corresponding Wigner and Weyl functions are

W(x, p) = µ

π
exp[−µ(x2 + p2)] (34)

W̃ (X,P ) = exp

[
− 1

4µ
(X2 + P 2)

]
(35)
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whereµ = tanh(β/2) = (1+2ηT )−1. More generally we consider the above Gaussian Wigner
and Weyl functions for any positive µ. Equation (16) shows that the corresponding operator
is

�NM = 2µ
(1 − µ)N

(1 + µ)N+1
δNM (36)

where δNM is the Kronecker delta. It is seen that when 0 < µ < 1 this is the thermal density
matrix. For µ = 1, it is simply the projection operator |0〉〈0| to the vacuum. When µ > 1,
this is an operator with both positive and negative eigenvalues, which is not a density matrix.

Using the Wigner and Weyl functions of equations (34) and (35) we calculate the quantities

�x = �p = (2µ)−1/2 σ(x) = σ(p) = 1

2
√
µ

τ(X) = τ (P ) = √
µ. (37)

It is seen that for the Gaussian Wigner and Weyl functions of equations (34) and (35) the
inequalities of equation (32) become equalities. Indeed, we can easily show that in this case
Tr[�†�] = µ. It is also seen that for µ > 1, where the operator � is not a density matrix, the
uncertainty product �x�p is less than 1/2.

Intuitively somebody might expect that any measure of correlation (we use τ (X), τ (P ))
is related to the uncertainties in position and momentum (which we quantify not only with �x,
�p but also with σ(x), σ(p)). Equation (31) shows that this is true for pure states. We see in
equation (37) that for mixed states, ‘the mixture’ increases the uncertainties and decreases the
correlations.

As a second example we consider the mixed state

ρ = 1
2 (|α1, α2〉〈α1, α2| + |−α1,−α2〉〈−α1,−α2|). (38)

In this case

�x = (
1
2 + α2

1

)1/2
�p = (

1
2 + α2

2

)1/2
(39)

σ(x) = 1

2

[
1 +

4α2
1

1 + exp
(−2α2

1 − 2α2
2

)
]1/2

σ(p) = 1

2

[
1 +

4α2
2

1 + exp
(−2α2

1 − 2α2
2

)
]1/2

(40)

τ (X) =
[

1 − 4α2
2

1 + exp
(
2α2

1 + 2α2
2

)
]1/2

τ (P ) =
[

1 − 4α2
1

1 + exp
(
2α2

1 + 2α2
2

)
]1/2

. (41)

These results should be compared and contrasted with those for the pure state

|s〉 = [
2 + 2 exp

(−α2
1 − α2

2

)]−1/2
(|α1, α2〉 + |−α1,−α2〉) (42)

which are

�x =
[

1

2
+
α2

1 − α2
2 exp

(−α2
1 − α2

2

)
1 + exp

(−α2
1 − α2

2

)
]1/2

�p =
[

1

2
+
α2

2 − α2
1 exp

(−α2
1 − α2

2

)
1 + exp

(−α2
1 − α2

2

)
]1/2

(43)
σ(x) = 2−1/2�x σ(p) = 2−1/2�p τ(X) = 21/2�x τ(P ) = 21/2�p.

It is seen that for large α1 and α2, in the case of the mixed state of equation (38) the correlation
widths are small (τ (X) ≈ τ (P ) ≈ 1); while in the case of the pure state of equation (42) the
correlation widths are large (τ (X) ≈ α1

√
2 and τ (P ) ≈ α2

√
2). It is also seen that for large

α1 and α2, in the case of the mixed state of equation (38) the uncertainty widths are σ(x) ≈ α1

and σ(p) ≈ α2; while in the case of the pure state of equation (42) the uncertainty widths are
σ(x) ≈ α1/

√
2 and σ(p) ≈ α2/

√
2, respectively.
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4. Creation and annihilation operators for Wigner and Weyl functions

The Fourier transform between the Wigner and Weyl functions encourages us to develop a
‘harmonic oscillator formalism’ with the Wigner x–p and Weyl X–P as dual representations.
In the Wigner x–p representation

x̂ = x p̂ = p X̂ = i∂p P̂ = −i∂x (44)

[x̂, p̂] = [x̂, X̂] = [p̂, P̂ ] = [X̂, P̂ ] = 0 [x̂, P̂ ] = [X̂, p̂] = i. (45)

We introduce the following ladder operators

b1 = 2−1/2(x̂ − ip̂) − 2−3/2(X̂ − iP̂ ) b
†
1 = 2−1/2(x̂ + ip̂)− 2−3/2(X̂ + iP̂ )

(46)
b2 = 2−1/2(x̂ + ip̂) + 2−3/2(X̂ + iP̂ ) b

†
2 = 2−1/2(x̂ − ip̂) + 2−3/2(X̂ − iP̂ ).

It is easily seen that

[b1, b2] = [b1, b
†
2] = [b†1, b2] = [b†1, b

†
2] = 0 [b1, b

†
1] = [b2, b

†
2] = 1. (47)

Straightforward, albeit lengthy, differentiation shows that when these operators act upon
WMN(x, p), they give

b1WMN(x, p) = M1/2WM−1,N (x, p)

b
†
1WMN(x, p) = (M + 1)1/2WM+1,N (x, p)

b2WMN(x, p) = N1/2WM,N−1(x, p) (48)

b
†
2WMN(x, p) = (N + 1)1/2WM,N+1(x, p).

It is seen that b†1, b
†
2 and b1, b2 are creation and annihilation operators for Wigner functions.

WMN are eigenstates of the ‘number operators’ b†1b and b
†
2b2 with eigenvalues M and N,

respectively:

b
†
1b1WMN(x, p) = MWMN(x, p) b

†
2b2WMN(x, p) = NWMN(x, p). (49)

We also point out that

b1〈M|U(x, p)|N〉 = 〈M|a†U(x, p)|N〉 b
†
1〈M|U(x, p)|N〉 = 〈M|aU(x, p)|N〉

(50)
b2〈M|U(x, p)|N〉 = 〈M|U(x, p)a|N〉 b

†
2〈M|U(x, p)|N〉 = 〈M|U(x, p)a†|N〉.

More generally, for arbitrary functions f (a, a†) and g(a, a†) we have

f (b
†
1, b1)g(b2, b

†
2)〈M|U(x, p)|N〉 = 〈M|f (a, a†)U(x, p)g(a, a†)|N〉. (51)

Using this equation we prove that

W(x, p; f (a, a†)�g(a, a†)) = g(b
†
1, b1)f (b2, b

†
2)W(x, p). (52)

The above operators can also be written in the Weyl X–P representation with

x̂ = i∂P p̂ = −i∂X X̂ = X P̂ = P. (53)

In this form they can act on Weyl functions

b1W̃MN(X,P ) = −M1/2W̃M−1,N(X, P )

b
†
1W̃MN(X,P ) = −(M + 1)1/2W̃M+1,N(X, P )

b2W̃MN(X,P ) = −N1/2W̃M,N−1(X, P ) (54)

b
†
2W̃MN(X,P ) = −(N + 1)1/2W̃M,N+1(X, P )

and

b
†
1b1W̃MN(X,P ) = MW̃MN(X,P ) b

†
2b2W̃MN(X,P ) = NW̃MN(X,P ). (55)
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5. Displacement of Wigner and Weyl functions

We define the displacement operators as

D(α1, α2, β1, β2) ≡ exp[i(α2 − β2)x̂] exp

(
−i

α1 + β1

2
P̂

)

× exp(i(β1 − α1)p̂) exp

(
i
α2 + β2

2
X̂

)
. (56)

The above notation might seem complicated here, but it is chosen because it simplifies a lot
of formulas later. In the Wigner x–p representation we use equation (44) and find

D(α1, α2, β1, β2)W(x, p) = exp[i(α2 − β2)x] exp(i(β1 − α1)p)

×W

(
x − α1 + β1

2
, p − α2 + β2

2

)
. (57)

We note that if W(x, p) corresponds to a Hermitian operator (e.g. a density matrix) and
is therefore real, the D(α1, α2, β1, β2)W(x, p) is in general complex and the corresponding
operator is no longer Hermitian.

In the Weyl X–P representation we use equation (53) and find

D(α1, α2, β1, β2)W̃ (X, P ) = exp

(
−i

α1 + β1

2
P + i

α2 + β2

2
X − iα1β2 + iα2β1

)
×W̃ (X + β1 − α1, P − α2 + β2). (58)

Let � be the operator corresponding to the Wigner function W(x, p) and Weyl function
W̃(X,P ). Using equation (52) we can show that the operator D(α1, α2)�D

†(β1, β2)

corresponds to the Wigner fuction

W(x, p;D(α1, α2)�D
†(β1, β2)) = exp

[ i

2
(α2β1 − α1β2)

]
D(α1, α2, β1, β2)W(x, p). (59)

This shows that when D(α1, α2, β1, β2) acts on a Wigner function, the corresponding operator
� is displaced on the left and right with different (in general) displacements. In the special
case [9] α1 = β1 and α2 = β2 we get

W(x, p;D(α1, α2)�D
†(α1, α2)) = D(α1, α2, α1, α2)W(x, p) = W(x − α1, p − α2). (60)

6. Gaussian Wigner and Weyl functions

We displace the Gaussian Wigner function of equation (34), and get

Gµ(x, p; α1, α2, β1, β2) ≡ D(α1, α2, β1, β2)
µ

π
exp[−µ(x2 + p2)]

= µ

π
exp

[
−µ

(
x − α1 + β1

2

)2

+ i(α2 − β2)x

]

× exp

[
−µ

(
p − α2 + β2

2

)2

+ i(β1 − α1)p

]
. (61)

Using equation (59) we interpret this Wigner function, for 0 < µ � 1, as representing the
‘displaced thermal density matrix’, which is displaced on the left and right with different (in
general) displacements:

ρ(α1, α2, β1, β2) = D(α1, α2)ρthD
†(β1, β2)

= 1

2πηT

∫
dγ1 dγ2 exp

(
−γ 2

1 + γ 2
2

2ηT

)
exp

{ i

2
[γ1(α2 − β2) − γ2(α1 − β1)]

}
× |γ1 + α1, γ2 + α2〉〈γ1 + β1, γ2 + β2|. (62)
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Here ηT = (1 − µ)/(2µ). When µ = 1 it represents the operator |α1, α2〉〈β1, β2|. When
µ > 1 it represents (as explained above) an operator which is not a density matrix, displaced
on the left and right with different (in general) displacements.

We also introduce the displaced Gaussian Weyl functions as the Fourier transform of the
displaced Gaussian Wigner functions

G̃µ(X,P ; α1, α2, β1, β2) ≡ D(α1, α2, β1, β2) exp

(
−X2

4µ
− P 2

4µ

)

= exp

[
− (X + β1 − α1)

2

4µ
+ i

α2 + β2

2
(X + β1 − α1)

]

× exp

[
− (P − α2 + β2)

2

4µ
− i

α1 + β1

2
(P − α2 + β2)

]
. (63)

It is easily seen that for the Gµ and G̃µ

〈〈x〉〉 = α1 + β1

2
〈〈p〉〉 = α2 + β2

2
(64)

〈〈X〉〉 = α1 − β1 〈〈P 〉〉 = α2 − β2 (65)

and that the ‘σ -quantities’ are the same as in equation (37).
In the case µ = 1 it is easily seen that the Gaussian Wigner and Weyl functions are

eigenstates of the annihilation operators

b1G1(x, p; α1, α2, β1, β2) = 2−1/2(β1 − iβ2)G1(x, p; α1, α2, β1, β2)
(66)

b2G1(x, p; α1, α2, β1, β2) = 2−1/2(α1 + iα2)G1(x, p; α1, α2, β1, β2).

Furthermore, Gµ(x, p; α1, α2, β1, β2) satisfies the ‘resolution of the identity’ relation

1

2πµ

∫
dα1 dα2 dβ1 dβ2 Gµ(x, p; α1, α2, β1, β2)G

∗
µ(x

′, p′; α1, α2, β1, β2)

= δ(x − x ′)δ(p − p′). (67)

Using this we can expand an arbitrary Wigner function W(x, p) as

W(x, p) = 1

2πµ

∫
dα1 dα2 dβ1 dβ2 λ(α1, α2, β1, β2)Gµ(x, p; α1, α2, β1, β2) (68)

λ(α1, α2, β1, β2) =
∫

dx dpW(x, p)G∗
µ(x, p; α1, α2, β1, β2). (69)

When µ = 1, this is, in the Wigner language, the expansion of an operator in terms of the
|α1, α2〉〈β1, β2|. When 0 < µ < 1, it is the expansion of an operator in terms of the displaced
thermal density matrices of equation (62) and when µ > 1 it is in terms of operators that are
not density matrices.

Similar expansion can be made for an arbitrary Weyl function in terms of the Gaussian
Weyl functions G̃µ(X,P ; α1, α2, β1, β2).

7. Squeezing of Wigner and Weyl functions

Squeezing in the x–p–X–P extended phase space will enable us to build states with desirable
correlations τ (X) and τ (P ). For example, for the Gaussian Wigner and Weyl functions of
equations (34) and (35) which correspond to density matrices for µ � 1, it can be seen from
equation (37) that the maximum values of the correlations τ (X) and τ (P ) are equal to 1.
Squeezing transformations will lead to states with large correlations τ (X) and τ (P ) and small
σ(p) and σ(x).
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Since from a mathematical point of view we have a two-mode formalism (which, however,
is used for the description of Wigner and Weyl functions of one-mode systems), the general
squeezing transformations (e.g. [11]) involve the Sp(4, R) group with the ten generators

x̂2, p̂2, X̂
2
, P̂

2
, x̂p̂, x̂X̂, x̂P̂ , p̂X̂, p̂P̂ and X̂P̂ . In this paper we consider the very special case

where

S(r) = exp[−ir(x̂P̂ + p̂X̂)]. (70)

Using the formula [12]

exp[rx∂x]f (x) = f (xer ) (71)

we act with the operator S(r) (in the representation of equation (44)) on the Gaussian Wigner
function of equation (34), and get

exp[−rx∂x + rp∂p]
µ

π
exp[−µ(x2 + p2)] = µ

π
exp[−µ(e−2rx2 + e2rp2)]. (72)

Similarly acting with the operator S(r) (in the representation of equation (53)) on the Gaussian
Weyl function of equation (35), we get

exp[r∂PP − r∂XX] exp

[
− 1

4µ
(X2 + P 2)

]
= exp

[
− 1

4µ
(e−2rX2 + e2rP 2)

]
. (73)

For these Wigner and Weyl functions we calculate the quantities

σ(x) = er

2
√
µ

σ(p) = e−r

2
√
µ

τ(X) = er
√
µ τ(P ) = e−r√µ. (74)

It is seen that these states have large correlation in position (τ (X)) and small uncertainty in
momentum (σ(p)). We stress that the well-known concept of squeezing is seen here in a novel
context. It is applied in the extended phase space x–p–X–P which shows not only the position
and momentum but also correlations in position and momentum.

As already mentioned, the general case of squeezing operators in this space contains
ten generators and requires further study which will reveal deeper connections between
correlations and uncertainties and enable the researcher to construct (at least theoretically)
states with desirable correlations and uncertainties, subject to the constraints of the uncertainty
relations of equation (32). States with desirable values of τ (X) and τ (P ) can be constructed
with appropriate squeezing. In this paper we have provided the necessary tools for this.
We have introduced creation and annihilation operators for the Wigner and Weyl functions
b1, b

†
1, b2, b

†
2 (to be distinguished from the usual creation and annihilation operators a, a†), the

corresponding displacement operators, etc.

8. Time evolution of Wigner and Weyl functions

Let H(a, a†) be the Hamiltonian of the system and ρ(0) its density matrix at time t = 0. At
time t the density matrix of the system is

ρ(t) = exp(itH )ρ(0) exp(−itH ). (75)

We now introduce

G(b1, b
†
1, b2, b

†
2) ≡ H(b2, b

†
2) − H(b

†
1, b1) (76)

and using equation (52) we write the Wigner function of the system at time t as

W(x, p; ρ(t)) = exp[itG(b1, b
†
1, b2, b

†
2)]W(x, p; ρ(0)). (77)
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In this sense G(b1, b
†
1, b2, b

†
2) is the ‘Hamiltonian’ for the Wigner function. This looks like

a Hamiltonian of a two-mode system but is used for the description of an one-mode system.
We note that a two-mode Hamiltonian for the description of an one-mode system is also used
in thermo-field dynamics [10].

In the presence of dissipation the evolution of the density matrix is described with the
equation

∂tρ = i[H,ρ] +
γ

2
(M + 1)(2aρa† − a†aρ − ρa†a) +

γ

2
M(2a†ρa − aa†ρ − ρaa†) (78)

where γ is the damping rate and M is the average number of bath quanta. For a monochromatic
bath with frequencyωB in thermal equilibrium at temperature T,M(ωB) = [exp(βωB)−1]−1.
Using equation (51) we easily see that the Wigner function evolves according to the equation

∂tW(x, p) = iGW(x, p) +
γ

2
(M + 1)(2b2b1 − b

†
2b2 − b1b

†
1)W(x, p)

+
γ

2
M(2b†2b

†
1 − b2b

†
2 − b

†
1b1)W(x, p). (79)

So the operator equation (78) which involves non-commuting operators reduces conveniently
to the differential equation (79).

Similar equations can be written for the Weyl function.

9. Discussion

The Wigner–Weyl formalism provides a deeper insight into the properties of a quantum state
that cannot be easily seen from the wavefunction (either in x or in p-representation). The
Wigner function shows that the position and momentum of the particle in a way are consistent
with the uncertainty principle. The Weyl function shows quantum correlations. In this paper
we have developed tools for the design and construction of quantum states at a finer level,
namely in the x–p–X–P space using the Wigner x–p and Weyl X–P representations. This
formalism is also suitable for the study of general operators (which are not necessarily density
matrices).

The correlation properties of a state have been quantified with the correlation widths
τ (X) and τ (P ). The values of these quantities have been calculated for several examples. The
correlation widths τ (X) and τ (P ) in conjuction with the uncertainties σ(x) and σ(p), satisfy
the inequalities of equation (32).

The ‘building blocks’ for the Wigner and Weyl functions are the WMN(x, p) of
equation (11) which involve Laguerre polynomials. We have introduced ladder operators
for these functions which are different from the usual creation and annihilation operators
(which act on number states). We have also introduced displacement operators for the Wigner
and Weyl functions of an operator �. They are functions of four variables and their physical
meaning has been explained in equation (59) which shows that the corresponding operator �
is displaced on the left and right with different (in general) displacements. Gaussian Wigner
and Weyl functions and their displacements, have been studied in section 6.

Squeezing of these functions has been studied in section 7. It has been shown that
appropriate squeezing can lead to states with large correlations (equation (74)). We stress
that this is squeezing in the x–p–X–P extended phase space and its general case contains ten
generators. It is therefore much more general than the well-known squeezing in position and
momentum and enables the researcher to manipulate the correlation properties of quantum
states.
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In section 8 the formalism has been used for the study of the evolution of quantum systems
(with or without dissipation). It can also be used in the context of quantum tomography (e.g.
[13]) or Bose–Einstein condensates [14].
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